Basics of Concrete Pavement Thickness Design

- Geometrics
- Thickness(es)
- Joints
- Materials

- Geometrics
- Thickness(es)
- Joints
- Materials

Most Often Influence Cost & Selection of Projects

- Geometrics
- Thickness(es)
- Joints
- Materials

Most Often Influence Real-world Performance

PERFORMANCE

Design Area	gn Area Performance Factor		
Materials Selection & Proportioning	ASR D-cracking Freeze-Thaw Scaling Skid Resistance		
Jointing & Subbase ——	Blow-ups Random cracking Faulting Pumping Spalls		
Thickness (Slab) ——	Fatigue Cracking		

Thickness Design Procedures

Empirical Design Procedures

- Based on observed performance
 - AASHO Road Test
- Mechanistic Design Procedures
 - Based on mathematically calculated pavement responses
 - PCA Design Procedure (PCAPAV)

PAVEMENT DESIGN

Pavement design is an a priori process.

The new pavement will be built in the future, on subgrades often not yet exposed or accessible; using materials not yet manufactured from sources not yet identified; by a contractor who submitted the successful "low dollar" bid, employing unidentified personnel and procedures under climatic conditions that are frequently less than ideal.

NCHRP 1-26 Phase II Final Report

Design of Concrete Pavements

• Thickness Design Considerations:

- Traffic Loads and Traffic Growth
- Subgrade and Subbases
- Drainage
- Concrete Properties
- Load Transfer
- Reliability

AASHTO Design Procedures

AASHTO Guide for Design of Pavement Structures - 1993

AASHO Road Test (1958-1960)

• Third Large Scale Road Test

- Maryland Road Test (1950-51) Rigid Pavements Only
- WASHO Road Test (1952-54)
 Flexible Pavements only
- Include both Rigid and Flexible Designs
- Include a wide range of axle loads and pavement crosssections

AASHO Test Layout

AASHO Test Layout

368 rigid test sections 468 flexible test sections

AASHO Test Traffic

Max Single Axle

Max Tandem Axle

AASHO Road Test Performance

Loop 3 5.0 4.0 4.0 3.0 Concrete (36 Sect) 2.0 Asphalt (4 Sect) 1.0 0 250 500 750 1000 1250

AASHTO Design Procedures & Changes

- 1961-62 AASHO Interim Guide for the Design of Rigid and Flexible Pavements
- 1972 AASHTO Interim Guide for the Design of Pavement Structures - 1972
- 1981 Revised Chapter III on Portland Cement Concrete Pavement Design
- **1986** Guide for the Design of Pavement Structures
- **1993** Revised Overlay Design Procedures
- 1998 Revised Portland Cement Concrete Pavement Design

1986-93 Rigid Pavement Design Equation

AASHTO DESIGN Traffic

ESAL's or E-18's

The number and weight of all axle loads from the anticipated vehicles expected during the pavement design life - expressed in 18-kip (80 kN) Equivalent Single Axle Loads for each type of pavement.

> -Rigid ESAL's or E-18's -Flexible ESAL's or E-18's

AASHTO DESIGN Traffic - ESALs

ESALS GENERATED BY DIFFERENT VEHICLES/DAY

VEHICLE	NUMBER	RIGID ESALs	FLEXIBLE ESALs
Single Units 2 Axle	20	6.38	6.11
Busses	5	13.55	8.73
Panel Trucks	10	10.89	11.11
Semi-tractor Trailer 3 Axles	10	20.06	13.41
Semi-tractor Trailer 4 Axles	15	39.43	29.88
Semi-tractor Trailer 5 Axles	15	57.33	36.87
Automobile, Pickup, Van	425	1.88	2.25
Total	500	149.52	108.36

AASHTO DESIGN Traffic

Load Equivalence Factor (LEF)

The Ratio of the Effect (Damage) of a Specific Axle Load on Pavement Serviceability to the Effect Produced by an 18-kip Axle Load at the AASHO Road Test.

Change for each: Pavement Type Thickness Terminal Serviceability.

AASHTO DESIGN Traffic

Load Equivalence Factor (LEF)

No. of repetitions of 18-k SAL Load causing given ΔPSI No. of repetitions of X-k Y-Axle Load for a same ΔPSI

Change for each: Pavement Type Thickness Terminal Serviceability.

LOAD EQUIVALENCY FACTORS FOR A GIVEN PAVEMENT STRUCTURE

For a Given Stress or Strain:

Stress or Strain of X-kip Load on Axle Type Y

Stress or Strain of 18-kip Load on a Single Axle

LOAD EQUIVALENCY FACTORS FOR A GIVEN PAVEMENT STRUCTURE For a Given Serviceability Loss:

of Repetitions of 18-kip Load on a Single Axle # of Repetitions of X-kip Load on Axle Type Y

AASHTO DESIGN Traffic

Concrete Response

Since pavement responses are different, the equivalency factors (LEFs) are different. When multiplying the traffic by the different equivalencies, you get different ESALs

Subgrade and Subbases

Subbase

- Layer of material directly below the concrete pavement.
- Subgrade
 - Natural ground, graded, and compacted on which the pavement is built.

Concrete Section

Subgrade / Subbase Strength Modulus of Subgrade Reaction, k

k (psi/in) = unit load on plate / plate deflection

Subgrade and Subbases

Design

- Subgrade strength is <u>not</u> a critical element in the <u>thickness design</u>.
 - Has little impact on thickness.
- Need to know if pavement is on:
 - Subgrade (k \approx 100 psi/in.),
 - Granular subbase ($k \approx 150 \text{ psi/in.}$),
 - Asphalt treated subbase (k ≈ 300 psi/in.)
 - Cement treated/lean concrete subbase (k \approx 500 psi/in.).

AASHTO DESIGN Subgrade Strength

Typical Soil Relationships

Soil Type	Strength	k-value (psi / in.)	Mr (psi)	CBR
Silts / Clays	Very Low	50-100	1000-1900	<3
Fine grained	Low	100-150	1900-2900	3-5.5
Sands	Medium	150-220	2900-4300	5.5-12
Gravely soils	High	220-250	4300-4850	>12
Bitumin.Treat.	High	350-450	100,000+	>12
Cement.Treat./LC	B High	400-600	500,000+	>12

Subgrade and Subbases

Performance

- Proper design and construction are <u>absolutely</u> <u>necessary</u> if the pavement is to perform.
 - Must be **uniform** throughout pavement's life.
- Poor subgrade/subbase preparation can not be overcome with thickness.
 - Any concrete pavement, built of any thickness, will have problems on a poorly designed and constructed subgrade or subbase.

UNIFORMITY:

The Key To GOOD PAVEMENT PERFORMANCE

Design for Uniform Support

Sources of Non-Uniform Support

- Expansive soils
- Frost susceptible soils
- Pumping (loss of Support)
- Cut-fill transitions
- Poorly compacted excavations
 - Utility work
 - Culverts

PAVEMENT DESIGN Subbase Effects

The current Design does not model the contribution of bases accurately.

At the AASHO Road Test, it was found that the concrete pavements with granular bases could carry about 30% more traffic.

The current design procedures allows concrete pavements built with granular bases to carry about 5 - 8% more traffic.

Concrete Properties

Flexural Strength (S'c) Determination

Concrete Properties

Compressive Strength f'_c

$$S'_{c} = 8-10 \ \ddot{0} f'_{c}$$

f'_c = Compressive Strength (psi) S'_c = Flexural Strength (psi)

Concrete Properties

Use average, in-field strength for design (not minimum specified)

If specify minimum flexural strength at 28-day of 550 psi & allow 10% of beams to fall below minimum:

STEP 1

Estimate SDEV: 9% for typical ready mix. SDEV = $550 \times 0.09 = 50$ psi <u>STEP 2</u> S'C design = S'C minimum + Z * SDEV S'C design = $550 + 1.282 \times 50$ S'C design = 614 psi

Drainage

Conditions for Pumping

- Subgrade Soil that will go into Suspension
- Free water between Slab and Subgrade
- Frequent Heavy wheels loads / Large Deflections

Drainage

NCHRP 1-34: Subsurface Drainage for Pavements

Cooperative Highery Benearch Program (NCHRP) Project 1-34, Scharsfare Divisionge for Processer, 11 and Scharsfare Divisionge for Processer, 11 and 12 and 12 and 12 and 12 and was to develop guidelines to exable designen to consider the effect of subsorthce divisions on pavement performance. This objective was ablieved largely through the collection and analysis of performance data throughout the United States. The key questions addressed in the study include the following:

 Do subdisinger design features contribute to improved povenues performance?
 Are free features cost effective? Under what conditions?

Data Collection and Analysis

Eighty-miss parament accions were surveyed under this study. Many of these autions were part of experiments concentrations that the states where drained and non-drained sections existed side by side. The performance data constant primarily of a viscal dismost earry, abhough

anne deflección data vere obtained. Durajos, coral autifice, natericho, climano, and obre des were also obtained form the State highway agostien word of al these sections. Performance data for o ner march 300 additional flexible and right protenents uppor to vere obtained flexible and right protenents were obtained flexible the Foldwall Highway (# 08) Administration (FHWA) right protenent dutatant base and from the Long. Texts Provinced Rulatant and annex (LTFP) definitione.

> The final analysis included four phases. Plustel provided the results of an extensive literature review and the documentations of current Shute durating practices. Phase II consisted of a comparison of the performance of all durined and non-drained sections at the same location. Phase III convolution of an analysis of the performance data through the development of mechanistic computing and models for furique crucking and ruting af flexible priorments and joint flating of rigid parameters. Finally, Phase IV willized the percendur, provide to sconther. If the

cycle cost analysis (LOCA) to establish the

cost-effectiveness of various subdrainage

Induced

Major Conclusions

- For Doweled PCC Pavements, Drainage has little affect on Faulting
 - Does reduce D-cracking
- Drainage significantly reduces fatigue cracking and rutting in AC Pavements
- Day lighted drainage works best with permeable bases

EST anning it to this consider and orginities whiteou percention.

Load Transfer

Load Transfer

- A slabs ability to share its load with neighboring slabs
 - Dowels
 - Aggregate Interlock
 - Concrete Shoulders
 - Tied Concrete, curb & gutter, and extended lane have same effect.

Aggregate Interlock

Shear between aggregate particles below the initial saw cut

Aggregate Interlock

Dowel bars

- Lengths from 15-18 in.
- 6.0 in. min. embedment length
- Diameter
 - 1.25 1.50 in. for roads
 - 1.5 2.0 in. for airports
- Epoxy or other coating used in harsher climates for corrosion protection

Load Transfer

Deflections in Concrete Pavement

Outside Pavement Edge (free edge)

	5 D _i	= ~2.5 D _i
12 ft Lanes	D _i	D _i
	~3.5 D _i	2 D _i
		Longitudinal Centerline (acts as tied concrete shoulder)

Undoweled transverse Joint

Doweled transverse Joint

AASHTO DESIGN

Effect of Dowels and Shoulders

Concrete Pavement Design

To Dowel or Not to Dowel?

Trucks Control Thickness

- Exclude dowels if:
 - Slab thickness < 7.0 in
- Include dowels if:
 Slab thickness > 8.0 in.

AASHTO DESIGN Reliability

The statistical factors that influence pavement performance are:

- RELIABILITY, R
 - The statistical probability that a pavement will meet its design life.
- STANDARD DEVIATION, so
 - The amount of statistical error present in the design equations resulting from variability in materials, construction, traffic, etc.

AASHTO DESIGN Reliability

<u>WinPAS</u>

PCAPAV Design Procedure

Design Basics

- Mechanistic stress analysis
- Calibrated to field tests, test roads
- Control criteria can be either:
 - Fatigue (cracking)
 - Erosion (pumping)
- Available computer program (*PCAPAV*)

Critical Loading Positions

 Midslab loading away from transverse joint produces critical edge <u>stresses</u> Corner loading produces critical pavement <u>deflections</u>

Differences Between Design Procedures

• Traffic Classification:

- AASHTO uses 18-kip ESALs
- PCA uses axle load distribution

Reliability

- AASHTO Reliability
- PCA Load Safety Factors

Drainage

PCAPAV Design

Two design criteria:

- Fatigue
 - Keeps pavement stresses due to repeated loads within safe limits
- Erosion
 - Limits the effects of pavement deflections at edges, joints and corners.

PCAPAV Design Procedure

Design Factors

- Concrete Properties
 - Flexural strength (modulus of rupture)
- Subgrade Strength, or subgrade-subbase combination
 - modulus of subgrade reaction, k-value
- Weights, frequencies, and types of truck axle loads
- Load Transfer
- Load Safety Factor
- Design Period

PCAPAV Design Traffic

 Numbers & weights of heavy axle loads expected during the design life

- ADT (average daily traffic in both directions)
- ADTT (average daily truck traffic in both directions)
 - Includes only trucks with six tires or more
 - Does not include panel and pickup trucks and other four-tire vehicles.
- Axle loads of trucks

PCAPAV Design Traffic

Axle loads Distribution

- The number of single and tandem axles over the design period
- Expressed as Axles per 1000 trucks
- Does not include panel and pickup trucks and other four-tire vehicles.

	Axles/1000	
	Trucks	design period
Single Axles		
28-30	0.58	6,310
26-28	1.35	14,690
24-26	2.77	30,140
22-24	5.92	64,410
20-22	9.83	106,900
18-20	21.67	235,800
16-18	28.24	307,200
14-16	38.83	422,500
12-14	53.94	586,900
	168.85	1,837,000
Tandem Axles		
48-52	1.96	21,320
44-48	3.94	42,870
40-44	11.48	124,900
36-40	34.27	372,900
32-36	81.42	885,800
28-32	85.54	930,700
24-28	152.23	1,656,000
20-24	90.52	984,900
16-20	112.81	1,227,000
12-16	124.69	1,356,000

PCAPAV Design Traffic

Traffic Categories

	Two-way ADTT	Category	LSF
Light Residential	3	LR	1.0
Residential Rural & secondary rds	10 - 30	1	1.0
Collector streets Rural & secondary rds (heavy trucks)	. 50 - 500	2	1.1
Minor Arterial Sts. Primary roads	300 - 600	2	1.2
Major Arterial Sts.	700 - 1500	3	1.2

PCAPAV Design Load Safety Factors

Recommended values

- Interstate, interprovincial, multilane projects
 - LSF = 1.2.
- Highways and arterial streets
 - LSF = 1.1
- Roads, residential streets, and other streets that carry small volumes of truck traffic
 - LSF = 1.0

PCAPAV

PCAPAV Design Simplified Procedure

Designs presented in Tabular Form

- Traffic
 - Type of road
 - Axle-load category (for the road type)
 - Avg. daily truck traffic
 - Probable maximum truck weights
- Subgrade and Subbase
- Dowels & slab edge support
- Concrete strength

PCAPAV Design Simplified Procedure

No Dowels - No edge support

Foundation Support, k, MPa/m		40		80			
Flexural Strength, MPa		3.8	4.1	4.5	3.8	4.1	4.5
Light Resident. 2-v	way ADTT = 3	150 m	m 140	140	140	125	125
Residential Rural & Sec. Rd.	ADTT = 10 20 50	165 165 175	150 150 165	140 150 150	150 150 150	140 140 150	140 140 140
Collector Rural & sec. Rd.	ADTT = 50 100 500	190 200 215	190 190 215	175 175 190	175 175 190	165 175 175	165 165 175
Minor Arterial	ADTT = 300 600	215 225	200 215	200 200	200 200	190 190	175 190

PCAPAV Design Simplified Procedure

No Dowels - With Edge Support

Foundation Support, k, MPa/m		40		80			
Flexural Strength, MPa		3.8	4.1	4.5	3.8	4.1	4.5
Light Resident. 2-w	way ADTT = 3	125 m	m 125	125	125	125	125
Residential Rural & Sec. Rd.	ADTT = 10 20 50	140 140 150	125 140 140	125 125 125	125 125 140	125 125 125	125 125 125
Collector Rural & sec. Rd.	ADTT = 50 100 500	165 175 175	150 165 175	160 160 160	150 150 165	140 150 150	140 140 150
Minor Arterial	ADTT = 300 600	190 190	175 190	165 175	175 175	165 165	150 165

Typical Concrete Pavement Thickness

- Depends on traffic load, subgrade, and climate.
 - City streets, secondary roads, and small airports
 - 100 to 175 mm (4 to 7 in.)
 - Primary roads and interstate highways
 - 175 to 280 mm (7 to 12 in.)
 - Large airports
 - 200 to 460 mm (8 to 18 in.)

1986-93 RIGID PAVEMENT DESIGN

Factors Affecting Rigid Pavements Thickness Serviceability (po, pt) Traffic (ESALs, E-18s) Load Transfer (J) Concrete Properties (S', E) Subgrade Strength (k, LS) Drainage (C_d) Reliability (R, S_{o})

AASHTO DESIGN Serviceability

Serviceability -

the pavement's ability to serve the type of traffic (automobiles and trucks) that use the facility **Present Serviceability** Index (PSI) 5.0 Very Good 4.0 Good 3.0 Fair 2.0 Poor 1.0 Very Poor 0.0

Accumulated Traffic

There are two concrete properties that influence pavement performance

- Flexural Strength (Modulus of Rupture), S'_c
 Average 28-day strength
 - 3rd-Point Loading
- Modulus of Elasticity, E_c

Flexural Strength (S'_c) Determination

Use average, in-field strength for design (not minimum specified)

If specify minimum flexural strength at 28-day of 550 psi & allow 10% of beams to fall below minimum:

STEP 1

Estimate SDEV: 9% for typical ready mix. SDEV = $550 \times 0.09 = 50$ psi <u>STEP 2</u> S'C design = S'C minimum + Z * SDEV S'C design = $550 + 1.282 \times 50$ S'C design = 614 psi

Modulus of Elasticity $E_c = 6750 \text{ S'}_c$ $E_c = 57,000 (\text{f'}_c)^{0.5}$

Flexural Strength	Modulus of Elasticity
600 psi	3,900,000 psi
650 psi	4,200,000 psi
700 psi	4,600,000 psi

AASHTO DESIGN Drainage, C_d

Avenues for water entry

AASHTO DESIGN Reliability

The statistical factors that influence pavement performance are:

- RELIABILITY, R The statistical probability that a pavement will meet its design life.
- STANDARD DEVIATION, s_o -The amount of statistical error present in the design equations resulting from variability in materials, construction, traffic, etc.

AASHTO DESIGN Reliability

WinPAS

PCAPAV Design Procedure

Design Basics

- Mechanistic stress analysis
- Calibrated to field tests, test roads
- Control criteria can be either:
 - Fatigue (cracking)
 - Erosion (pumping)
- Available computer program (*PCAPAV*)

Differences Between Design Procedures

- Traffic Classification:
 - AASHTO uses 18-kip ESALs
 - PCA uses axle load distribution
- Reliability
 - AASHTO Reliability
 - PCA Load Safety Factors
- Drainage
 - PCA does not include

PCAPAV Design

Two design criteria:

- Fatigue
 - Keeps pavement stresses due to repeated loads within safe limits
- Erosion
 - Limits the effects of pavement deflections at edges, joints and corners.

Fatigue Analysis

- Performed for edge stresses (critical stresses)
- Based on stress ratio
 SR = Equivalent Flexural Stress 28-Day Modulus of Rupture
- Fatigue not consumed by repetitions of one load is available for repetitions of other loads.

Fatigue Analysis

- Allowable number of load repetitions for each axle group is determined from nomographs
- % Fatigue is calculated for each axle group

% Fatigue = $\frac{\text{Expected repetitions}}{\text{Allowable repetitions}}$

• Total fatigue consumed should not exceed 100%.

Fig. 5. Fatigue analysis—allowable load repetitions based on stress ratio factor (with and without concrete shoulder).

Erosion Analysis

- Repetitions of heavy axle loads cause:
 - pumping; erosion of subgrade, subbase and shoulder materials; voids under and adjacent to the slab; and faulting of pavement joints.
- Erosion is a function of Power, or rate of work.
 Power = <u>corner deflection (w) * pressure (p) * area</u> duration of deflection.
- A thin pavement with its shorter deflection basin receives a faster load punch than a thicker slab.

Erosion Analysis

- Performed for corner deflections (critical deflections)
- Erosion factor is determined from tables
- Allowable number of load repetitions for each axle group is determined from nomographs
- Erosion Damage is calculated for each axle group
 % Erosion Damage = <u>Expected repetitions</u>

Allowable repetitions

 Total erosion damage from all axle groups should be less than 100%

PCAPAV Design

Design controlled by:

- Fatigue usually controls design of light-traffic pavements
 - Single-axles usually cause more fatigue damage
- Erosion usually controls design of undoweled medium- and heavy-traffic pavements
 - Tandem-axles usually cause more erosion damage

PCAPAV Design Procedure

- Selection of an adequate thickness is dependent upon the choice of other design features:
 - Jointing system
 - Shoulder type
 - Subbase type

PCAPAV Design Procedure Concrete Properties

- Flexural Strength (Modulus of Rupture),
 - Avg. 28-day strength in 3rd-point loading
- Other Factors
 - Fatigue Properties
 - Concrete Strength Gain with Age

Third-point Loading

PCAPAV Design Concrete Properties

Comparison of f'_c, MR, and Required Thickness

Compressive	Third Point	Effect on
Strength	Flexural Strength	Slab Thickness
3000 psi	450 - 550 psi	7.0 in
4000 psi	510 - 630 psi	6.5 in.
5000 psi	570 - 710 psi	6.0 in.

Modulus of Subgrade Reaction, k-value

Plate-Load Test

 $k = \frac{\text{Plate load on subgrade}}{\text{Plate deflection on subgrade}}$

C = Plate deflection on subgrade

$$k = \frac{5.0 \text{ psi}}{0.5 \text{ in}} = 100 \text{ psi / in.}$$

Subgrade

- Plate-load test is rarely performed
 - time consuming & expensive
- Estimate k-value by correlation to other tests
 - e.g. California Bearing Ratio (CBR) or R-value tests.
- Lean concrete subbases increases k-value.

Comparison of Soil Types and k-value

k-value	Type of Soil	Remarks
100 psi/in.	Silts and clays	Satisfactory
200 psi/in.	Sandy soils	Good
300 psi/in.	Sand-gravels	Excellent

Effect of Untreated Subbase on k-value

Subgrade	<u>Subbase k-value</u>			
k-value (psi/in)	4 in.	6 in.	9 in.	12 in.
75	85	96	117	140
150	165	180	210	243
225	235	242	280	330
300	320	330	367	430

Effect of Cement-treated Subbase on k-value

Subgrade	Subbase k-value			
k-value (psi/in)	4 in.	6 in.	9 in.	12 in.
75	220	294	386	496
150	367	477	680	845
225	514	698	900	

Effect of Untreated Subbase on k-value

Subgrade	Subbase k-value			
k-value (psi/in)	4 in.	6 in.	9 in.	12 in.
75 150 225 300	85 165 235 320	96 180 242 330	117 210 280 367	140 243 330 430

Effect of Cement-treated Subbase on k-value

Subgrade	Subbase k-value			
k-value (psi/in)	4 in.	6 in.	9 in.	12 in.
75	220	294	386	496
150	367	477	680	845
225	514	698	900	

PCAPAV Design Design Period

- 20 to 35 years is commonly used
- Shorter or longer design period may be economically justified in some cases
 - A special haul road to be used for only a few years.

PCAPAV Design Traffic

 Numbers & weights of heavy axle loads expected during the design life

- ADT (average daily traffic in both directions)
- ADTT (average daily truck traffic in both directions)
 - Includes only trucks with six tires or more
 - Does not include panel and pickup trucks and other four-tire vehicles.
- Axle loads of trucks

PCAPAV Design Traffic

Axle loads Distribution

- The number of single and tandem axles over the design period
- Expressed as Axles per 1000 trucks
- Does not include panel and pickup trucks and other four-tire vehicles.

	Axles/1000	
kN	Trucks	design period
Single Axles		
125-133	0.58	6,310
115-125	1.35	14,690
107-115	2.77	30,140
97.8-107	5.92	64,410
88.8-97.8	9.83	106,900
80.0-88.8	21.67	235,800
71.1-80.0	28.24	307,200
62.2-71.1	38.83	422,500
53.3-72.2	53.94	586,900
44.4-53.3	168.85	1,837,000
Tandem Axle	S	
213-231	1.96	21,320
195-213	3.94	42,870
178-195	11.48	124,900
160-178	34.27	372,900
142-160	81.42	885,800
125-142	85.54	930,700
107-125	152.23	1,656,000
88.8-107	90.52	984,900
71.1-88.8	112.81	1,227,000
53.3-71.1	124.69	1,356,000

PCAPAV Design Traffic

Traffic Categories

	Two-way ADTT	Category	LSF
Light Residential	3	LR	1.0
Residential Rural & secondary rds	10 - 30	1	1.0
Collector streets Rural & secondary rds (heavy trucks)	. 50 - 500	2	1.1
Minor Arterial Sts. Primary roads	300 - 600	2	1.2
Major Arterial Sts.	700 - 1500	3	1.2

PCAPAV Design Load Safety Factors

Recommended values

- Interstate, interprovincial, multilane projects
 - LSF = 1.2.
- Highways and arterial streets
 - LSF = 1.1
- Roads, residential streets, and other streets that carry small volumes of truck traffic
 - LSF = 1.0

PCAPAV Design Other Loads

Warping and Curling of Concrete

- Warping moisture variations.
 - Creates compressive restraint stresses in the slab bottom.
- Curling temperature variations.
 - During the day, the top surface is warmer than the bottom and stresses develop at the slab bottom.
 - During the night, the top is colder and stresses develop at the slab surface.
- Assumed to cancel each other out.

PCAPAV Design Design Procedures

Rigorous

- Detailed axle-load-distribution data is available
- Simplified
 - Axle-Load Data Not Available
 - Designer does not directly use the axle-load data
 - Tabular form

PCAPAV Design Rigorous Procedure

• Requires the following design factors:

- Type of joint and shoulder
- Concrete flexural strength (MR) at 28 days
- k-value of subgrade or subgrade-subbase combination
- Load safety factor (LSF)
- Axle-load distribution
- Expected number of axle-load repetitions
- Use PCAPAV Computer Program

Design Tip

Don't Drink and Design