Chapter 9 Deflections of Beams

9.1 Introduction

in this chapter, we describe methods for determining the equation of the

deflection curve of beams and finding deflection and slope at specific points

along the axis of the beam

9.2 Differential Equations of the Deflection Curve

consider a cantilever beam with a
concentrated load acting upward at the free
end

the deflection v is the displacement
inthe vy direction

the angle of rotation @ of the axis
(also called slope) is the angle between the
X axis and the tangent to the deflection

curve

point m; is located at distance x
point m, is located at distance x + dx
slopeat m; is 6

slopeat m, is 6+df

denote O' the center of curvature and
p the radius of curvature, then
pdd = ds

and the curvature x is

dx

v +dv

(b)




K = — = — LN /o

Negative
curvature curvature

Q

the sign convention is pictured in figure @ | )

slope of the deflection curve

dv dv

— = tané or 0 = tant—

dx dx

for 6 small ds ~ dx cos =~ 1 tan 6 ~ 0, then

1 do dv

K = — = — and 0 = —
p dx dx
1 do d v

K = — = — =
p dx dx?

then the differential equation of the deflection curve is obtained

o[7 d*v M

-M

o oA (N (N

it can be integrated to find 6 and v

dM dVv LV_] —V
— =V - = -
d x d x a T |- l l T
then dv = _V d*v - . ﬂ +q —q
dx’ El

dx’ El H [Jj



sign conventionsfor M, V and q areshown

the above equations can be written in a simple form
ElV' = M EiVv' = V ElV'" = -q

this equations are valid only when Hooke's law applies and when the
slope and the deflection are very small

for nonprismatic beam [l = 1(x)], the equations are

d2v
El,— = M

dx?
d dv dM
—(El—) = — =V
dx dx? dx
d? dv dv

(Elx ) = — = -q
dx? dx? dx

po L+

9.3 Deflections by Integration of the Bending-Moment Equation

substitute the expression of M(x) into A e l B
the deflection equation then integrating to A s
satisfy i ———

(i) boundary conditions vA=0 va=0

(ii) continuity conditions " l 5

(iii) symmetry conditions

to obtain the slope 6 and the A ] B



deflection v of the beam
this method is called method of

successive integration

Example 9-1
determine the deflection of beam AB
supporting a uniform load of intensity g
also determine . and 6., 0Og

flexural rigidity of the beam is El

bending moment in the beam is

2

gLx g X
M = -

2 2

differential equation of the deflection curve

gLx qx°
Elv' = -
2 2
Then
qLx? qx°
Elvvi = — - — + C;
4 6
" the beam is symmetry, .. 0=Vv'=
qL(L/2)? q(L/2)°
4 6
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then C. = ql®/24

the equation of slope is

q
Vo= - (L* - 6LX + 44X}
24 E|

integrating again, it is obtained

q
v = - L’x - 2L + X + G,
24 El
boundary condition: v = 0 at x = 0
thus we have C, =0

then the equation of deflection is

q
v = - L3x - 2L + XY
24 EI
maximum deflection . occurs atcenter (x = L/2)
L 5qL*
Omax = -V(—) = (1)
2 384 EI

the maximum angle of rotation occurs at the supports of the beam

qL’®
Or = V() = - (®)
24 E|
qL®
and s = V(L) = ()

24 El



Example 9-2 - a

determine the equation of deflection y l l l | y |

curve for a cantilever beam AB  subjected |

to a uniform load of intensity q y

also determine 6 and O atthe free end

A B _
flexural rigidity of the beam is El _‘“‘““\i ls,
T~J6,
bending moment in the beam o
qL® qx°
M = -— + gLx - — .
2 ? ( VLl ]
qu qX2 L‘Lz \A 'l'V
EvVv = -—— + gqLx - —  * a X
2 2 "
gL gLx® qx°
Ely = -— + — - — + G
2 2 6
boundary condition v' = 6 = 0 at x = 0
Cl = 0
X
Vi = -—— (BL* - 3Lx + X9
6El
integrating again to obtain the deflection curve
ox°
Vv = -— (6L* - 4Lx + X + C,
24El
boundary condition v = 0 at x = 0

C2:O



then

v = -—— (6L% - 4Lx + X
24El
qL’®
Omax = O = V'(I—) = - (?)
6 El
qlL*
5max = '58 = 'V(L) = —(i)
8 El
Example 9-4 d
A Y B
determine the equation of deflection A~ :éz
curve, 05 0Og, Omax and Ooc H|
ﬂ4b<—b

flexural rigidity of the beam is El

pendi ts of the b P C“"?” "
ending moments of the beam ox =
PbX ‘_L‘__ f)‘max
M = — 0 =x = a 2
L 1 |
Pbx ()
=——-P(x-a) (a = x = L) ] y
[ ]
£ [
%
differential equations of the deflection curve b x i
L I x<a |
Pbx
Elv' = — (0 = x = a)

L E
T 4' }
Pbx
Elv'=——-P(x-a)(@a = x
L ’—’I .
L

integrating to obtain (b)

|
A
—
p
e



Pbx?

Ev' = — + C, (0 = x = a)
2L
Pbx? P(x - a)?

EvV = — - — 7 4+ C @=x<=L)
2L 2

2" integration to obtain

Pbx®
Ev = — + C, x + C;3 (0 = x = a)
6L
Pbx* P(x-a)®
Elv = - +Cyx +Cy @=x=1)
6L 6
boundary conditions Ao \“”‘E’f}" 8
S L T?&/&
i v0) = 0 (i) yu) =0 ¢ | 1 C g

continuity conditions

iy v@) = v@) (v) v@) = v@)

(i) vo) = 0 => C; =0
B PbL® Pb°
@@ wv(L) = 0 => —-—+C,L+C, = O
6 6
. Pba’ Pba’
@ v@) = v@) == — + C = — + G,
2L 2L
C]_ = C2
_ . Pba® Pba®
(iv) v@) = v(@) => —+Cla+Ci=——+Cha+ C,
6L 6L



then we have
Pb (L?- b%)
6L

C1:C2:

C3:C4:O

thus the equations of slope and deflection are

Pb
VAR pep— { T (0 < x = a)
6LEI
Pb P(x-a)?
Vo= - ——(LP-D%-3%) - —— (a <x =L)
6LEI 2EI
Pbx
v = -——(L2-b*-%H) (0 < x = a)
6LEI
Pbx P(x-a)®
v = -—(L*-b*-%x) - ——— a=x=1)
6LEI 6El
angles of rotation at supports
Pab(L + b)
Opn = V@O = -——— (3)
6LEI
. Pab(L + a)
g = V(L) = —— ()
6LEI

0, isfunctionof a(orb),tofind (Oa)max, Set dOn/db=0

On = -

Pb(L? - b?)
6LEI

dos/db = 0 = 2-3ph* = 0 =>bh = L/J3



PL%J3
(QA)max = -
27 El

formaximum ¢ occursat Xx;, if a > b, x4 < a

dv L% - b’
— =0 = x = @a = b
dx 3
Pb(L2 _ b2)3/2
Omax = -V(X1) = —————— (V)
943 LEI
Pb(3L? - 4b%)
at x = L/~2 oc = -v(L/2) = ({)
48 EI
" the maximum deflection always occurs near the midpoint, .". Jc
gives a good approximation of the Jpax
In most case, the error is less than 3%
an important special caseis a = b = L/2
P 2 2
Vi = —(L*-4x) (0 = x = L/?2)
16EI
P 2 2
v = —@L-4x) (0 = x = L2
48El
v' and v aresymmetric with respectto x = L/2
PL?
Orn = 6 = ——
16EI
pL®
Omax = O0c = ——

10



9.4 Deflections by Integration of Shear-Force and Load Equations

the procedure is similar to that for the bending moment equation except

that more integrations are required

if we begin from the load equation, which is of fourth order, four

integrations are needed

Example 9-4

determine the equation of deflection curve

for the cantilever beam AB

triangularly distributed

intensity Qo

also determine g

supporting a

load of maximum

and 0Og

flexural rigidity of the beam is El

do (L - X)

the first integration gives

ElV" =

V(L) =V

thus EIv" =

QO(L'X)2
-+
2L

1

= 0 = C =

Jo (L'X)2
2L

11

(b)



2nd integration

Qo (L - x)°
6L

ElV' = + G

vVi(L) = M = 0 = C, =0
QO(L'X)3
6L

thus EIV' =

3rd and 4th integrations to obtain the slope and deflection

Go (L - X)°
Ev = -——— 7 4 ¢,
241
o (L - X)5
Elv = -— 7 4+ Cyx + C,
120L

boundary conditions :v'(0) = v(0) = 0
the constants C; and C, can be obtained
0oL’ qoL*

C3 = - C4 =
24 120

then the slope and deflection of the beam are

JoX

Vo= - (4L - 6L + 4L - X))
24LE|
QOX2
v = - (10L® - 10L% + 5Lx* - X))
120LEl
QOL3
g = V(L) = - (®)

24 El

12



QOL4
og = -Vv(L) = ()
30 El

Example 9-5

an overhanging beam ABC with a ) lp

i)
concentrated load P applied at the end A

determine the equation of deflection PJ; L {-w .
= I
curve and the deflection oJc atthe end

flexural rigidity of the beam is El

the shear forces in parts ABandBCare 4 _— c

P
V -— (0<x<L)

(b)

3L
P (L<x<—)
2

the third order differential equations are

Vv

P
EWV" = -— (0<x<L)
2

3L
Enve = P L<x<—)

2

bending moment in the beam can be obtained by integration

Px

M = EIN' = -— + (C; O =x=1)
2

3L

M = EIV' = Px + G, L =x=—)

2

13




boundary conditions : v'(0) = Vv"(3L/2)
we get 3PL

C1:O C2:'_
2

therefore the bending moment equations are

Px
M = EIV' = -— 0 =
2
P(3L - 2x)
M = ENV' = -——mw+———
2

2" integration to obtain the slope of the beam

Px?
EV = -— + G 0 =
4
Px(3L - x)
Ev = - —/—— " 4+ C (L <=
2
continuity condition : V(L) = V(LY
PL® ,
-+ C = -PL® + C,
4
3PL?
then Cs, = C + ——
4
the 3" integration gives
Px
Elv = -— + C3x + GCs
12
PX3(9L - 2x
Elv = _¥
12

14

0
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boundary conditions : vO) = v(L) = 0

we obtain
PL?
C5 = 0 C3 = —
12
5PL2
and then C, = ——
6
the last boundary condition: v(LY) = 0
pL®
then Ce = -——
4

the deflection equations are obtained

Px
v = —(L* - xXH 0 =x=1)
12El
P 3L
v = -— (3% - 10X +9L¢ -2} (L = x = —)
12El 2

= -L(SL-X) (L-x)(L-2x)
12El

deflectionat C is

3L PL3
oc = -V(—) = — (i)
2 8EI

9.5 Method of Superposition
the slope and deflection of beam caused by several different loads acting
simultaneously can be found by superimposing the slopes and deflections

caused by the loads acting separately

15



consider a simply beam supports two l"’

loads : (1) uniform load of intensity q l l l i l \ 1 [ ]
and (2) a concentrated load P AA'_ C =
the slope and deflection due to load 1 L L _I_ L T
are ’ (a) ’ |
5qL° $
) = A . 3
384E| 4§§*§;§~ }% —
A ’B
.
(Oa)r = (O8)1 = —— % ! % |
24E| - }

the slope and deflection due to load 2

are

PL3 PL?
©0c) = — On)2 = (Oa)2
48E| 16El

therefore the deflection and slope due to the combined loading are

5qL* pL®
oc = (@0c)hr *+ (©Oc) = + —
384El 48El
gL’ PL?
Oh = O = (Oa)1 + (©Oa)e = — + —
24E]| 16El

tables of beam deflection for simply and cantilever beams are given in
Appendix G

superposition method may also be used for distributed loading

consider a simple beam ACB with a
triangular load acting on the left-hand half

16



the deflection of midpoint due to a

concentrated load is obtained [table G-2] Pl J j C
Af 1 B
Pa ) ) — ‘ é
dc = —(3L%-4a) L L |
48EI o2 2
(a)
substitute gdx for P and x for a i
(qdx) x | [ .
déc — (3L2 _ 4X2) A{[ . _ L& B
48EI y'\ ‘ V.
X dx
the intensity of the distributed load is j
(b)
ZqOX
q - y r)r
L A C B
A~ T~ A"
T :
then oJc due to the concentrated load Oa
2 L L ‘
qOX 2 2 2 [ 2 1
doc = (3L - 4x°) dx
24LEI ©
thus oJc due to the entire triangular load is
2 Qo X’ ) ) QOL4
oc = § (3L - 4x%) dx =
O 24LEI 240EI
similarly, the slope 6, dueto P actingonadistance a from left
end is
Pab(L + b)
dy = ——m—
6LEI
replacing P with 2qgexdx/L, awith x, and b with (L-Xx)

17



2q0x3(L - X)(L + L - X) o
df, = dx = (L -x) (2L - x) x* dx
6L°El 3L%El

thus the slope at A throughout the region of the load is

2 Qo ) 41QO|—3
Op = § (L-x)(2L-x)x“dx =
0 3L% 2880E]

the principle of superposition is valid under the following conditions

(1) Hooke's law holds for the material

(2) the deflections and rotations are small

(3) the presence of the deflection does not alter the actions of applied
loads

these requirements ensure that the differential equations of the deflection

curve are linear

Example 9-6 l l ‘I’ ; P
a cantilever beam  AB  supports a |- - 1 B
uniform load q and a concentrated load P 5 bl
as shown L
determine Jg and 6g 3
El = constant
A B g
from Appendix G : . s
. \\! T B
for uniform load q b o ]
qa’ qa’
@)1 = ——(4L-2a) (Og)1 = —
24EI 6EI

for the concentrated load P

18



pL3 PL?
(58)2 = — ((95)2 = —
3El 2E|

then the deflection and slope due to combined loading are

ga’ pL3
55 = (53)1 + (55)2 = —(4L-a) + —
24El 3EI
ga’ PL?
0 = (Og)1 + (0g) = — + —
6El 2El
Example 9-7
a cantilever beam AB with uniform l lql
A B
load q acting on the right-half '
determine oJg and 0Og o ‘ I ‘
2 2 '
El = constant (@)
consider an element of load has magnitude S gdx
g dx and is located at distance x from the |2 W i i

support : ‘ﬁ

from Appendix G, table G-1, case 5 ()

by replacing P with gdx and a with X

(qdx)(x*) (3L-x) (qdX)(x°)

B — B —

6El 2El

by integrating over the loaded region

¥

L ox3(3L-x) 419l P < -
0g = § ——"dx = 1
L2 6EI 384E]| ~

19



Logx° 7qL3

O = —dx = —
Y2 2El 48EI
Example 9-8 L % p 5
a compound beam ABC supports a | ’ j ﬂl 1 l l 1 l
concentrated load P and an uniform & B ¢
load g asshown a—p b >
determine oJg and 6, (a)
El = constant

P
| ks
we may consider the beam as composed ﬁf .
. F==
3

of two parts : (1) simple beam AB, and

(b) F
(2) cantilever beam BC d

the internal force F =2P/3 is obtained

for the cantilever beam BC (c)
gb* Fb? gb* 2Pb®
55 = — 4+ —— = — 4+
8EI 3El 8EI 9EI

for the beam AB, @, consists of two

parts : (1) angle BAB' produced by dg, and

(2) the bending of beam AB by theload P

e gb* 2Ph®
(QA)l = _ =
a 8aEl 9aEl

the angle dueto P is obtained from Case 5 of table G-2, Appendix
G withreplacing a by 2a/3 and b by a/3

20



O - P(2a/3)(a/3)(a + a/3) 4Pa’

6aEl 81El

note that in this problem, Jg is continuous and 6 does not
continuous, i.e. (fg). # (Op)r

Example 9-9
an overhanging beam ABC supports a uniform load g as shown
determine  dc Aww%uu
El = constant L -|‘
dc may be obtained due to two parts @
(1) rotation of angle 0 ) [ 1
(2) a cantilever beam subjected AT RERREEY i)wq_
to uniform load q L |
firstly, we want to find 0g W
3 o/ 4 % .
O = - £ + Met V Hé‘\l al,
24E] 3EI i
Caf el | gl(dat-LY)
) ﬁ 6El ) 24E|

gaL(4a’ - L?)

then 01 = abg =
24E]|

bending of the overhang BC produces an additional deflection o,
qa’
52 = —
8EI

21



therefore, the total downward deflection of C

IS

gaL(4a’ - L% ga*
50 = 51 + 51 = -
24E]| 8EI
ga
= — (a+L)@Ba*+aL-L?
24E|
for a large, oc isdownward;for a small, Jc isupward
for 6c = 0 3a+aL-L> = 0
L(v13 -1)
= ——— = 04343L
6
a>0.4343L, oc isdownward; a<0.4343L, Jc isupward

point D
bending moment is zero at this point

at point D, dyldx* = 0

9.6 Moment-Area Method

is the point of inflection, the curvature is zero because the

the method is especially suitable when the deflection or angle of rotation

at only one point of the beam is desired
consider a segment AB of the beam

denote 6ga the difference between

03 and QA

Osn = O - 0Oa

consider points m; and m,

22



ds Mdx
dg = — = ——

Mdx / El is the area of the shaded
strip of the Mdx/El diagram

integrating both side between A and B
B 8 M

§ do0 = § —dx
A A El

Ogn = 0Og-0, = areaofthe M/EI diagram between A and B
this is the First moment-area theorem

next, let us consider the vertical offset
ts:a  between points B and B; (on
the tangent of A)

dt = X1 dog = X1

El

integrating between A and B

B B Mdx
§dt = § x
A A El
ie. tga = 1% moment of the area of the M/EI diagram between

A and B, evaluatedw.r.t. B

this if the Second moment-area theorem

Example 9-10
: A B _
determine 6 and Jg of a } E——— .
| | ~— %)
cantilever beam AB  supporting a i

23



concentratedload P at B

(0]

sketch the MJ/EI diagram first

1 PL PL?
Al = -—L— = -
2 El 2El
PL?
Osn = O - O = O = -——
2El
2L pL®
Qi = Aix = AA— = -——
3 6El
pL®
og = -Q = — (i)
6El
Example 9-11
determine 6z and o of a

cantilever beam AB  supporting a

uniform load of intensity g acting

over the right-half

sketch the MJ/EI diagram first

1 L qL? qL?

A1 = __(_ =
3 2 SEl 48E|
L gl? qL®

A2 = _(_) -
2 SEl 16EI
1 L qL? gL’

A3 = __(_ =
2 2 4EI 16EI

24




7qL3
Ogn = O = A+A+A; = —— (3)
16EI

o = tga

Arxy + Axxo + AsXs

gL® 1 3L 1 3L 1 5L 41gL*
= — (—— + —— 4+ — = (\L)
El 48 8 16 4 16 6 384El
Example 9-12
lP
a simple beam ADB supports a A D __B
N
concentrated load P as shown T , =
determine 65 and oJp ‘ L |
L Pab Pab v
AL = —(—) = — A b *» B
2 LEI 2El : ) o
N’l Df/ o
L+b Pab (L + b) \-\"\.\ | s Ta/a
taa=As = Dy
3 6El e
ﬂ B__
BB Pab (L + b) N
1 i -
On = = ———  _=Tai
L 6EIL 0 b
).’]: T
to find the deflection op at D -
Az\\ ///, m
oo = DD; - D,D; i
U-/ a
Pa’b (L + b) =3
DD]_ = aHA =
6EIL

D2D1 = tD/A = A2 X2
A Pab a Pa’h

2 EIL 3 6EIL

25



Pa’b?
5[) =

3EIL

to find the maximum deflection J,.x at E, weset 0 =

X1 Ple PbX12
A; = — =
2 EIL 2EIL
QE/A = 9E - QA = -Ag = -PbX12/2E|L
Pab (L + b) Pbx,*
Oph, = ——— =
6EIL 2EIL

then x; = [(L2-bD)/3]"

X1 Pb o 302
and 5max = X1 HA - A;3— = —(L -b)
3 943EIL
Or OJmax = Offsetofpoint A fromtangentat E
2 X1 Pb 2 5 3/2
5max = A3 = -_— (L = b )
3 943EIL

Conjugate Beam Method

EIv' = EldO/ldx = M

Integrating

0

§ — dx
El

v = § § —dxdx
El

26



beam theory

dM/dx = V dv/dx = -q
V. = -{qgdx M = -§§ gdxdx

suppose we have a beam, called conjugate beam, whose length equal to
the actual beam, let this beam subjected to so-called "elastic load" of
intensity MJ/EI, then the shear force and bending moment over a portion

of the conjugate beam, denoted by V and M, can be obtained

M M
V = -§—dx M = - § § —dxdx
El El
then
(1) the slope at the given section of the beam equals the minus shear
force in the corresponding section of the conjugate beam
(2) the deflection at the given section of the beam equals the minus

bending moment in the corresponding section of the conjugate beam

I.e. 6 = -V
o = -M

the support conditions between the actual beam and conjugate beam can

be found
Actual Beam Conjugate Beam
fixedend 6=0, v=0 V=0, M=0 free end
free end 0+0, v=0 V+0, M=+0 fixed end
simpleend 6+ 0, v=0 V+0, M=0 simpleend
interior support 60, v=0 V+0, M=0 interior hinge
interior hinge 6+0, v+0 V+0, M=0 interior support

27



} /
A Ees s »
. 5 ) - 7
A ~
4 ’ ol ~ A
Y|
7 # 7
Example 1
: lP
1 PL PL
Og=-Vg=-— L=- (3) ?‘ B
2 El 2E| A
PLZ 2L  PL® Ay F7 /B
Sg=-Mg=-———=-—— ({) W
2EI 3 3El PL =
El
w
Example 2 A,iyllillilt;];,g
1 2Lwk?  wLl?® WEE Wl
Orn=-Va=-—— =- (?) TS
2 3 8EI  24El ALY
4 795
Wl Lowl?LL I
oc=-Mc=- —- — Wl
24E1 2 8EI 2 4 S4EL

g wlL 3L 1 1 1wl

3 8EI2 8 48 64 128 EI

5wL?
= (V)
384E]|

28



Example 3 M
1 M2L ML g A
®) g

On=-Va=Rp =-———=-—r M M.
2 El 3 3El = i —
1 ML ML 2
Og=-Vg=Rg=———=—+— () A:L ML
2 EI3 6El 1 Vi
ML L 1 L M L
oc=-Mc=-(——-————)
6EI 2 2 2 2El 6
1 1 ML? ML?
:-(———)— = -— (i)
12 48 EI 16El
Example 4 M
ML A 2: ‘ ,33
HB - 'MB - ( )
El ME1
ML L ML A A/
Js=-Mg=——= — (1) A B
El 2 2E|
Example 5 %
Lo o g&l&ii“ﬂ
Og=-Vg=-— =- (?) A }W %L [
3 2El 6El !
A 4
gl’ 3L gL’ W B
og=-Mg=-———=-—— (i) 2
6El 4  SEI s

29



Example 6

P
1 L PL PL? i
Op=-Vp=-—— =- (?)
2 2 4El 16EI A’Q’ C 79’8
PL
PL? L 1 L PL L AAET
ey iy
16El 2 2 2 4El 6 Wis 2
; ; Al = B
PL° 1 1 PL ﬂfa
=-— (=)= -— () =
El 32 96 48El|
9.7 Nonprismatic Beam
El + constant
Example 9-13 l”
] A B__YC D E
a beam ABCDE is supported a C |
concentrated load P at midspan as
L L L L
shown }*z S N zﬁ‘
| L |
(a)
IBD = 2|AB = 2|DE = 21
determine the deflection curve, 6, and ¢ l"’
A B c D
Px L
M = — 0 =x=—) d 21 d
2 2 (b)

then EN"=Px/2 (0 = x = L/4)

EQIV'=Px/2 (U4 = x = L2)

30



Px?

thus vV=——+C; (0 = x = L)
4EI
Px?
V=——+C, (L4 = x = L2)
8El
vi = 0 at x = L/2 (symmetric)
PL?
C2 = -
32ElI
continuity condition v'(L/4) = Vv'(L/4)"
5PL?
C]_ - -
128El
P 2 2
therefore Vo= - (5L - 32x9) 0 = x = LD
128El
P 2 2
vVio= -——(L° - 4X) (L/4 = x = L2
32El

the angle of rotation 0, is

5PL2
On = V(©0) = - @)
128EI

integrating the slope equation and obtained

P , 32x°
vV = - GbLx - —) + C; (0 = x = LMY
128El 3
P 4x3
v = -— (% - —) + C4 (L4 = x = LI2)

32El 3
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boundary condition v(0) = 0

we get C; = 0
continuity condition v(L/4) = v(L/4)"
pL®
we get Cs, = -
768El

therefore the deflection equations are

Px
vV = - (15L% - 32x¥) (0 = x = L/4)
384E|
v = - (L> + 24L% - 32X°) (L4 = x = L)
768El

the midpoint deflection is obtained

3PL?
d5c = -v(lL/2) = (1)
256E]

moment-area method and conjugate beam methods can also be used

LP
A ¢ B

Example 9-14
a cantilever beam ABC supports a 3%
concentrated load P at the free end lP i
C

e = 2l = 21 gl s N

determine Ja

ol &
A 1
denote J; the deflection of A due to C fixed +

P(L/2)° pL? PL

1 =

Ew’é
3El 24E| agj_g,//” |
[Z)
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and Jc

Oc

P(L/2)°  (PL/2)(L/2)
+

3E(21) 2E(2I)

P(L/2)*  (PL/2)(L/2)
+

2E(2I) EQI)

addition deflection at A due to dc and ¢

52:5C

5A = 51

moment-area method and conjugate beam d I

methods can also be used

+ Hc— =

+ 0

L 5pL3
2 4sEl
) 5PL3
16l

9.8 Strain Energy of Bending

consider a simple beam

couples M

theangle 6 is

if the material is linear elastic,

6 has linear relation, then

AB subjected

to pure bending under the action of two

33

M and

5PL3
96EI
PL?
16EI
.A ¢
1 ke
L~
(e)
P
A Q B|
T |
(f)
9 4 & \M
- .
A A
e
.-w;ri
El16?

2L



IL__df!_jl
for an element of the beam P

i M |i b,
40 = xdx = — dx <jf_
dX2 ________ A
Md6 M 2dx El(d6)?
dU = dw = —— = =
2 2E| 2dx

by integrating throughout the length of the beam

L MZdX L El dzy 2
u = § = ) dx

= 5 —(
° 2EI 2 d¥
shear force in beam may produce energy, but for the beam with L/d > 8,

the strain energy due to shear is relatively small and may be disregarded
deflection caused by a single load

Po Mot
Uu = W = — Uu = W =
2 2
2U 2U
o = — or 0 =
P Mo
Example 9-15
a simple beam AB of length L i 5
supports a uniform load of intensity A l l l i l i l l B
evaluate the strain energy e NoToren
| 5 4
qLx ¢ q
M = - — = —(LX -XZ)
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L MZdX 1 L g 2
U= §— = — § [—(x-x)] dx
o 2EI 2EI % 2
0 L
= —§ (% -2LC+xNdx = g°L°/ 240El
8El °
P
Example 9-16 A
- S
a cantilever beam AB is subjected to s
three different loading conditions ‘
(a) a concentrated load P at its free end " @
(b) amoment M, atits free end A
| N
(c) both P and M, acting simultaneoush | .,
determine o, duetoloading (a) ) :
determine 6, due to loading (b) ®)
My P
(@) M = -Px o
L MAdx L (-Px)%dx P ",
U = _ = S R
° 2EI °  2El 6 ©
Pon P PL®
W=u = Op = ——
2 6EI 3EI
(b) M = -Mg
. M?dx L (-Mg)%dx Mo’L
U = _ = =
° 2EI °  2EI 2E|
MoOa Mo’L Mol
W=u = O =
2 2EI El
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©) M = -Px - M,

L M?dx L (-Px - Mo)?dx _P2L3 PMoL® ML

U= § — =§ + +
° 2EI °  2EI 6EI 2EI  2El
PSa Mo6a P73 PM,L? Mo’L
w=uU + = — + +
2 2 6El 2El 2E|
1 equation for two unknowns J, and Oa
9.9 Castigliano's Theorem (Energy Method)
du Pdo ! P i — /
= [ = I
do c !
i P U
dC = odP — =0 :
dP s' g
pds
where C is complementary strain energy
for linear elastic materialsC = U
du
then we have — = 9
dP
du
similarly — =0
dM

forboth P and M acting simultaneously, U = U(P, M)

oU oU
— =5 — =0
oP oM

in example 9-16 (c)
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p2L3 PM,L? ML

u = — + +
6El 2El 2El
oU pL® MoL?
o = — = ——_ +
oP 6EI 2El
ou PL® Mol
g = = +
oM 2El El
in general relationship
oU o
oi = —— Castigliano's Theorem
OP i
ou o M?dx M oM
5 = = § = § (=) (—)dx
P | oP;  2El El oP;

this is the modified Castigliano's Theorem

in example 9-16 (c)

M = -Px - M
oM ouU
= -X = 1
oP M g
1 pL3 M,L?
0 = —J(-Px-Mg)(-x)dx = —— +
El 6EI 2E|
1 PL2 M,L
6 = — §(-Px-My(-1)dx= —— +

El 2El El
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Example 9-17
a simple beam

uniform load ¢

AB
20 kN/m, and a , l

supports  a g !

concentrated load P = 25kN p— peTenen
L = 25m E = 210GPa 5 £—
| = 31.2x10°cm* q
M
determine Jc AREE ,l,)
Px gLx qx° 'K v
M = — + — - —— R
2 2 2
P 4L
method (1) Ri=7 +7
M?2dx o 1 Px gqLx e
u = §{— = 2§ (— + - ) dx
2EI 0 2Bl 2 2 2
P 5PqL* gL’
96El 384El 240El
ouU pL® 5qL*
5C = — = — 4+
oP 48EI 384El
method (2)
oM/loP = X/2
M oM w2 1 Px ogbx  g¥* X
de = T = 2] —(—+—-—)()
El opP ° El 2 2 2 2
P 5qL*
48EI 384El

1.24mm + 1.55mm

2.79 mm
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Example 9-18 | q

a overhanging beam ABC supports a L

|
A A_B C
uniform load and a concentrated load as — :
L- > T
shown e i
determine oJc and Oc¢ : B .
ﬁ- —— éx‘\ ¢
the reactionat A due to the loading is " \“;‘TQW-
gL P .
= — - — P
= 20 3 g
A 3&3 C
2
qxl hﬂl Xy ——f
MAB = RA X1 - ‘ L
2 | L 2
e P
qLXl PX]_ le2 2 2
= - - (0 = X = L)
2 2 2
MBC = -Px (0 = X = L/Z)
then the partial derivatives are
aMAB/ oP = -X1/2 (0 = X = L)
OMgec! 0P = -X (O = X = L/Z)
oc = §(MIED(oM/aP)dx

= sOL (Mag [EI)(0Mps/0P)dx  + S;/Z(MBC/EI)(aMBC/aP)dx

1 L qLXl PXl qX12 X1 1 L/2

=—7 ( . - )(-—)dxs + — §  (-Px2)(-x2)dx,
El ° 2 2 2 2 El °

P qL*
8EI 48EI
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to determine the angle 6c, we place a couple of moment Mc at C

q P
A LT e
A — A lC
2 2 L — 4= B
’ A X X7
gXy R,
Mag = Rax;- | L -k
5 2
qlx; Px,  Mcxi  gx°
= - - - 0 =x =1L
2 2 L 2
Mgc = -PxX2 - Mc 0 = x, = L/2
then the partial derivatives are
aMAB/ 5MC = -X1/|_ (O = X = L)
OMgc/! oMc = -1 (0 = X = L/Z)
Oc = §(M/EI)(M/ Mc)dx

L 12
= SO (MAB /El)(MAB/Mc)dX + §0 (MBC /El)(MBcl Mc)dx

1 SL qLXl Px; Mc X le2
=
El © 2 2 L 2

X1
)(- —)dxy
L

1
+ — 1§ (Px2 - Mc)(-1)dx;
El ©

since. Mc is avirtual load, set Mc =0, after integrating 6c is
obtained
7PL? gL’

HC:_-_

24El| 24E|
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9.10 Deflections Produced by Impact

9.11 Temperature Effects
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